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SCOPE 

This document is a technical report on both the chemical elemental analysis and source-
factor contribution analysis of airborne fine- and course particulate matter (PM) sampled at 
the Monash air quality monitoring station located in the Tuggeranong valley, ACT. Its main 
scope is to summarise and provide any necessary procedural details, numerical parameters 
used in the mathematical models, and their immediate results in a technical/scientific 
manner to allow interested readers to reproduce our findings. An executive summary 
outlining the most important details and results in a general comprehensible way will be 
published separately. 

 

INTRODUCTION AND AIM 

Atmospheric aerosols and airborne particulate matter (PM) are highly variable components 
of the lower atmosphere and play a number of important roles in environmental issues 
related to climate, air quality, visibility degradation, atmospheric chemistry, and (adverse) 
human health effects.[1] The health risks posed by PM are based on a number of factors, but 
mainly due to particle size, surface area, and chemical composition. 

Elevated concentrations of PM (both PM10 aerodynamic diameter of less than 10 µm, and 
PM2.5 aerodynamic diameter of less than 2.5 µm,) are of particular concern in Canberra. 
Composition of the PM is of community concern especially when elevated concentrations 
occur. It is known that the size and composition of both coarse aerosols (PM10) and fine 
particulate matter (PM2.5) are directly linked to their sources – which are mainly fuel 
combustion processes (transportation, energy production, residential heating), secondary 
aerosols (referred to as secondary sulfates, comprised of ammonium sulfate and nitrate 
resulting from atmospheric photochemistry), traffic related pollution (tyre abrasion, 
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resuspended road dust), and natural sources (crustal dust, sea salt, plant material). 
Therefore, source identification and composition analysis of size-segregated particulate 
matter is crucial in establishing and monitoring source-specific health risks for an exposed 
population as well as to inform policy makers to aid in the development of suitable 
legislation for improved air quality management within an airshed. 

A previous report (Preliminary Assessment of Wintertime Air Quality in the Tuggeranong 
Valley, ACT)2 recommended that elemental analysis be undertaken to help confirm the 
sources of PM pollution. The scope of this project is to provide detailed information not only 
on the chemical composition of coarse and fine airborne particulate matter present in the 
Canberra airshed and the Australian Capital Territory, but also, if possible, to derive 
information on the origins and contributing factors to these pollutants. 

 

DATASET AND METHOD 

For the purpose of this study a small number of PM2.5 and 
PM10 filters (Teflon® 2 µm pore size membrane filters, 
monthly counts summarised in the table on the right) – which 
were routinely collected within the ACT Ambient Air Quality 
Monitoring Program framework using Thermo Scientific 
Partisol™ 2025Plus/2025i Sequential Air Samplers at the 
Monash monitoring station (35°25ʹ05.8ʺS, 149°05ʹ38.5ʺE) in 
Canberra, ACT – have been sent off to the Institute for 
Environmental Research at the Australian Nuclear Science and 
Technology Organisation (ANSTO, Sydney) for accelerator 
based Ion Beam Analysis (IBA).[3] 

Accelerator based IBA is a collective term for techniques in 
which high energy ion beams, typically in the range of MeV, 
are used to non-invasively probe the elemental compositions 
(and depth profiles) in near-surface layers of solid samples. A 
detailed description of ion beam analysis is outside the scope 
of this report; information and technical details on accelerator 
based ion beam analysis itself,[4] and on its applications for 
PM elemental analysis, can be found in the literature.[5] 

In this particular case the collected membrane filters have been subjected to particle-
induced X-ray emission (PIXE)[6] spectrometry for the detection and quantitative analyses of 
the elements F, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Br, Sr, and Pb, 
and subsequently to particle-induced gamma-ray emission (PIGE)[7] spectrometry for the 
additional quantification of H which serves as a measure for the concentration of organic 
matter. The total PM2.5 and PM10 mass concentrations have been determined 
gravimetrically by weighing the filters pre and post sampling, using a digital balance (Mettler 
Toledo® XP6 Microbalance, capacity 0.08 mg - 6.1 g, sensitivity ± 1 µg) under strictly 
controlled conditions at the ACT Government Analytical Laboratory. The sampling period for 
each filter was 24 h at a nominal flow rate of ∼16.7 L/min. Exact sample volumes (∼21-

Month # PM2.5 # PM10 

May-14 5  
Jun-14 5  
Jul-14 1 1 

Aug-14 4 4 
Sep-14   
Oct-14 7 7 
Nov-14 5  
Dec-14 1  
Jan-15   
Feb-15 1  
Mar-15 2  
Apr-15   
May-15   
Jun-15 3  
Jul-15 2  

Aug-15 1  

Σ 37 12 
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24 m3) were automatically measured by the PartisolTM 2025Plus/2025i air samplers, and 
individual filter (normalised to 0°C) readings were used to express all concentrations in mass 
per volume. 

Using elemental and total mass concentrations as input, two mathematical procedures have 
been applied to determine PM compositions and furthermore to estimate pollutant sources 
and their seasonal contributions: 

- Correlation analysis and known stoichiometric relations, using the equations given in 
the interagency monitoring of protected visual environments (IMPROVE) program. 

- Positive matrix factorisation (PMF) for a more detailed and comprehensive statistical 
analysis of source factors and source factor contributions. 

More information on the individual methods will be presented together with a discussion of 
their results in the next section. 

 

RESULTS AND DISCUSSION 

CHEMICAL COMPOSITION ANALYSIS – ELEMENT CONCENTRATIONS 

Primary results of the chemical (PIXE & PIGE) analysis, i.e., average element concentrations 
over all samples, are summarised on the next two pages in Table 1 for fine aerosols (PM2.5) 
and Table 2 for coarse aerosols (PM10). All element concentrations (given in the upper 
sections of the tables) are reported in ng/m3. The sample mean values and their respective 
95% confidence intervals (second column) are highlighted; element species for which a 
majority of individual results are significantly below the method detection limits (MDL, right 
columns) are greyed out – special care should be taken when interpreting these numbers. 
Additionally, the population median (Med), population standard deviation (SD), and 
population maxima (Max) are reported for each element. 

It is evident that average concentrations of crustal elements (Si, Al, Fe, Ca, K, Na, Ti) are 
significantly higher for the (coarse) PM10 fraction – hinting to a (not unexpectedly) distinct 
contribution of wind-blown soil. In general, (aged) sea salt (NaCl) from sea spray is a 
significant factor only in marine environments, but there are Cl concentrations in the PM10 
fraction indicating a sea salt contribution to the aerosols in the ACT. The amount of sulfur is 
about the same in both the fine and coarse PM fractions. This could be attributed to the 
small size of secondary sulfate aerosols (around 0.1–1 µm),[8] which either pass through the 
filters or adsorb to primary aerosols in about the same ratio. The hydrogen on the filters is 
associated with sulfates, nitrates, water, and mainly organic material – and again, average 
quantities are roughly on the same level for PM2.5 and PM10. 

The lower sections in Table 1 and Table 2 summarise the results of composition analyses in 
µg/m3 based on the IMPROVE program, those will be discussed in detail later on.  
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PM2.5 Average Med SD Max MDL 
Na 131 ± 115  346 1197 703 
Al 35 ± 10 26 30 146 20 
Si 120 ± 29 101 86 410 13 
P 6 ± 1 6.4 2.9 16.5 11 
S 243 ± 50 192 149 692 10 
Cl 89 ± 30 78 89 366 10 
K 114 ± 25 120 76 315 10 
Ca 9 ± 3 7 9 37 9 
Ti 3 ± 1 2 3 10 6.9 
V 0.9 ± 0.4 0.5 1.2 5.6 5.8 
Cr 2.1 ± 0.5 1.6 1.6 7.5 4.6 
Mn 1.8 ± 0.5 1.7 1.5 5.8 3.8 
Fe 48 ± 9 43 26 132 3 
Co 0.7 ± 0.3 0.0 0.9 2.9 4.5 
Ni 0.5 ± 0.3 0.5 0.8 3.3 3.1 
Cu 2.8 ± 0.6 2.7 1.9 9.4 3.4 
Zn 7 ± 2 5 6 23 3 
Se 2.0 ± 0.8 1.1 2.5 11.8 10 
Br 5 ± 2 5 5 24 14 
Pb 9 ± 2 10 6 20 23 
H 556 ± 119 567 357 1702 11 

Soil 0.5 ± 0.1 0.4 0.3 1.6  
AS 1.0 ± 0.2 0.8 0.6 2.8  

OMH 5.7 ± 1.3 5.6 3.9 17.6  
NaCl 0.3 ± 0.3  0.9 3.1  
Knon 0.20 ± 0.06 0.24 0.16 0.58  

RCM 7.6 ± 1.1 8.0 4.1 20.6  
% RCM 53 ± 4 50 11 90  

Mass 15.1 ± 2.9 15.3 8.9 41.6  

Table 1 Top section: Total average PM2.5 element concentrations and their most important 
statistical parameters in ng/m3; columns from left: average value ± 2 × standard error of 
the mean, population median (Med), population standard deviation (SD), population 
maximum (Max), and method detection limit (MDL). Shaded data indicate average 
concentrations significantly below the respective method detection limits, thus care 
should be taken when interpreting these numbers.  
Bottom section: Source contributions and their statistical parameters estimated from 
element concentrations, for details see later section “Source contribution – IMPROVE 
algorithm”. Rows from top: soil, ammonium sulfate (AS, secondary sulfate), organic 
matter from hydrogen (OMH), sea salt aerosol from sea spray (NaCl), non-soil potassium 
(Knon, mass calculated as K2O), reconstructed mass (RCM), overall RCM percentage, and 
gravimetric filter mass, all in µg/m3. 
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PM10 Average Med SD Max MDL 
Na 72 ± 159  251 869 672 
Al 125 ± 55 103 86 276 19 
Si 481 ± 179 423 282 971 12 
 P  5 ± 1 4 2 8 10 
 S  214 ± 74 207 116 442 9 
Cl 222 ± 145 160 228 677 9 
K  112 ± 39 111 62 221 8 
Ca 51 ± 17 49 26 100 8 
Ti 10 ± 4 10 6 21 7 
V  0.6 ± 0.5 0.2 0.7 2.0 5.9 
Cr 1.8 ± 0.8 1.7 1.3 4.9 4.4 
Mn 4 ± 1 4 2 9 4 
Fe 143 ± 51 135 80 281 3 
Co 0.8 ± 0.7 0.2 1.1 3.0 3.5 
Ni 0.3 ± 0.3  0.4 1.0 3.0 
Cu 6 ± 3 5 4 13 3 
Zn 7 ± 3 4 5 16 3 
Se 0.9 ± 0.9  1.5 3.9 8.9 
Br 7 ± 3 6 5 16 12 
Pb 10 ± 5 7 9 30 21 
H 334 ± 139 259 219 784 9 

Soil 1.9 ± 0.7 1.8 1.1 3.7  
AS 0.9 ± 0.3 0.9 0.5 1.8  

OMH 3.1 ± 1.5 1.8 2.3 7.7  
NaCl 0.2 ± 0.4 0.0 0.6 2.2  
Knon 0.06 ± 0.06 0.03 0.09 0.26  

RCM 6.1 ± 2.0 6.3 3.1 11.2  
% RCM 56 ± 18 50 25 55  

Mass 11.9 ± 5.0 11.7 7.4 22.4  

Table 2 PM10 element concentrations and sample statistics in ng/m3 (top section); results of 
source contribution analysis in µg/m3 (bottom section). For a detailed description of 
columns and rows see caption of Table 1.  
For some species in this table (Na, Ni, Se) not enough data was available to calculate any 
meaningful medians; this also applies to Na and NaCl in Table 1. 
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Table 3 Spearman correlation coefficients between all analysed PM2.5 element concentrations. 
Values denoting significant correlations ρ> 0.5 are highlighted in bold blue, while 
values for medium correlations 0.25 ≤ρ≤ 0.5 are marked bold.  
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It should be noted that it was originally intended to submit each one PM10 filter and one 
PM2.5 filter for 1 in 6 days over a two month period across each season. However there were 
a series of technical problems that interfered with the collection of PM10 samples. This lead 
to the actual number of PM10 filters submitted for element analysis being rather limited. To 
keep the project on schedule, and because fine particulate matter is of much more interest 
in terms of human health effects,[1] missed PM10 samples were replaced with additional 
PM2.5 samples – any further discussions and results presented in this report are almost 
exclusively referring to PM2.5 data. 

For a more in-depth analysis, once the element concentrations for each individual filter 
were known, the first step was to look for species-specific correlations over the whole 
sample population. For this purpose Spearman’s correlation coefficients ρ  

)1(
6

1 2

2

−
−= ∑

nn
diρ   

between each species were calculated, where di = xi – yi is the difference between the 
ranked variables. In other words, ρ is essentially the Pearson product-moment correlation of 
the data ranks, thus not specifically measuring linearity, but more generally quantifying 
monotonic relations. The resulting correlation coefficients (for PM2.5) can be found in Table 
3. Strong correlations (ρ > 0.5) are highlighted in bold blue, while medium correlations 
(0.25 ≤ ρ ≤ 0.5) are only marked bold. 

Strong positive correlations, indicating the same source, can be seen for the sets {Al, Si, S, 
Ca} and {K, Fe, Cu, Zn, H}, while strong negative correlations are found for {K, Ca} and {Ca, 
Zn, H}. These results make sense when looking at the chemical composition of the major soil 
parent materials, which are Quartz SiO2, Calcite CaCO3, Feldspar KAlSi3O8, and Mica 
K(Mg,Fe)3AlSi3O10(OH)2.

[9] Therefore, finding strong correlation between Al, Si, Ca, and to a 
certain extent Fe, K, and Ti, points to windblown soil/dust as one source for PM2.5. On the 
other hand, a fair amount of K is also known to stem from biomass burning;[10] i.e., it can be 
used as a trace element for that very source, which also explains the negative K–Ca 
correlation found in this study (more soil/dust and less wood burning during summer and 
vice versa during winter months). 

In addition to the correlation analysis it is also 
useful to look at species-specific concentration 
scatter plots in order to check in which form the 
respective elements are found. For that purpose 
Figure 1 (right) and Figure 2 (below) show both 
the [Al]–[Si] and the [H]–[S] scatter plots. 

  

y = 0.31x 
R² = 0.91 

0.0 

0.1 

0.1 

0.2 

0.0 0.1 0.2 0.3 0.4 
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 [µ

g/
m

3 ]
 

Si [µg/m3] 

Figure 1 [Al]–[Si] scatter plot including a linear 
regression (red line). Regression equation 
and correlation coefficient are shown top 
left. 
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The data in Figure 1 confirms that there is a 
strong [Al]–[Si] correlation, which is not only 
monotonic (Spearman’s ρ = 0.84, see Table 3) but 
also linear (Pearson’s r = 0.91). The observed 
[Al/Si] = 0.31 ratio is very close to Earth’s crustal 
value (≈ 0.28) and thus a good indicator for clay 
alumina-silicates as a source. This ratio has also 
been reported for dust aerosols from Australia’s 
Lake Eyre Basin previously.[11] The plot in Figure 2 
is used to check if all S from secondary sulfate 
aerosols is found in form of fully neutralised 
ammonium sulfate (NH4)2SO4 – which is the case 
as all [H/S] ratios are well above 0.25. 

 

To further verify the source appointments 
established and discussed so far, one can 
also look at the time-series plots of element 
concentrations, especially for any known 
source-characteristic tracer elements. 
Hence, both Figure 3 and Figure 4 (right) 
depict the (monthly based) time-series for 
elements characteristically found in crustal 
soil/dust and elements more likely to be 
found in wood smoke. 

It is evident that the concentrations of Al, 
Si, Ca, and Fe are significantly higher on 
PM2.5 filters collected during the summer 
months (November to January). The main 
source of these elements (windblown soil 
and dust) has already been established and 
agrees with the fact that dust aerosols are 
more likely found during the hot season. On 
the contrary, the amount of K, which is a 
well known tracer element for residential 
wood combustion and biomass burning,[12] 
is found to be elevated during the cold 
season, i.e., during May to August.  

The green bars labelled “OMH” in Figure 4 
indicate the concentration of organic 
matter estimated from H, however, for 
convenient scaling the concentration was 
divided by a factor of 100. As expected the 
carbon levels correlate with K, even though 
this is more of a rough estimation because 
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Figure 2 [H]–[S] scatter plot, the red line 
indicates the [H/S] = 0.25 ratio. 

Figure 3 Time series of elements characteristic 
of soil and mineral dust. 
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Figure 4 Time series of elements characteristic 
of wood smoke / biomass burning. 
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individual elemental and soot-carbon concentrations were not directly measured. Zn 
concentrations (red bars) are shown in Figure 4 because of the strong [K] – [Zn] correlation 
observed in Table 3. This correlation has been reported in connection with biomass burning 
and wood smoke in previous papers.[13]  

The next step, after directly identifying some of the pollutant sources, will be to use the 
chemical composition data in combination with some mathematical models to further refine 
source appointments and/or identify additional source contributions. 

 

SOURCE CONTRIBUTION ANALYSIS – IMPROVE ALGORITHM 

IMPROVE (interagency monitoring of protected visual environments)[14] is a visibility and 
aerosol monitoring program in the United States which was implemented in 1985 in order 
to detect and predict haze formation in national parks and protected wilderness areas. 
Besides using photometric data as main input, the program also utilises data from elemental 
analyses for calculations of aerosol concentrations contributing to haze and air pollution – 
such as ammonium sulfate, ammonium nitrate, (total) organic carbon, and fine soil dust. 

The calculation of these source contributions is based on simple stoichiometric relationships 
and some additional assumptions – details can be found in the scientific literature[15] and 
only a short summary will be given here: 

− The soil mass concentration is estimated by summing all elements predominantly 
associated with crust minerals; all elements are assumed to be present in form of 
their oxides; FeO and Fe2O3 are assumed equally abundant. An overall factor of 1.16 
is used on all stoichiometric ratios to account for minor soil constituents like Na2O, 
MgO, H2O, and CO2. The final equation reads:  
[SOIL] = 2.20 [Al] + 2.49 [Si] + 1.63 [Ca] + 2.42 [Fe] + 1.94 [Ti]. 

− K has a soil (K2O) and non-soil component (Knon from smoke), thus [Fe] is used as a 
surrogate for soil potassium, i.e., a factor of 0.6 [Fe] is taken into account for [SOIL]. 
For tracing smoke [Knon] = [K] – 0.6 [Fe] is used.  

− A general problem with Teflon filter substrates is that Chlorine can be volatilised 
during filter collection, thus salt is calculated by [NaCl] = 2.5 [Na], rather than simply 
[Na] + [Cl]. 

− All elemental S is assumed to be from sulfate; if it is fully neutralised as ammonium 
sulfate (NH4)2SO4 it can be calculated by [AS] = 4.125 [S]. 

− Organic matter from hydrogen [OMH] = 11 × ([H] – 0.25 [S]), assuming that the 
average organic composition was 71% C, 20% O, and 9% H. 

− Reconstructed mass (RCM) is then the sum over all the individual source factors, and 
is ideally very close to the gravimetrically measured filter mass. 

It should be noted that the latter statement about RCM being close to the measured filter 
mass will inevitably not be met, as the original IMPROVE algorithm also accounts for 
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additional contributions from ammonium nitrate, total organic carbon, elemental carbon, 
and light absorbing carbon – all data which were unfortunately not available in the present 
study. Thus, a certain deviation from the total chemical mass balance (CMB) must be 
expected and the following results of the composition analyses shown in Figure 5 and Figure 
6, as well as those in the bottom sections of Table 1 and Table 2, should be interpreted as 
approximations rather than exact contributions. 

Figure 5 now shows the IMPROVE 
source contribution breakdown for 
all individual PM2.5 filters averaged 
over respective sampling months, 
with sources being soil/dust, salt 
(NaCl), ammonium sulphate (AS), 
organic matter from hydrogen 
(OMH), and potassium (K) from 
smoke as contributing factors. The 
“unspecified” fraction represents 
the remainder from filter mass 
minus reconstructed mass (RCM). 
The average mass closure is slightly 
above 50% which is, considering 
the limited size of the data set and 
available chemical analyses, not 
too bad. The monthly breakdown 
for the PM10 filters is depicted in 
Figure 6 and Table 2.  

In general, monthly PM2.5 levels 
observed at the Monash air quality 
monitoring station are well below 
the advisory standard outlined by 
the NEPM for Ambient Air 
Quality[16] – with two exceedances 
observable in Figure 5 for June and 
July 2015. It should, however, be 
noted that these two averages are 
based on a very small number of 
analysed filters and thus do not 
necessarily reflect the overall PM2.5 

pollution level for these months. 

It can clearly be seen that the total 
PM2.5 levels are significantly higher 
during the winter months. This can be attributed to the increased residential wood burning 
activity, evident from the increased amounts of potassium from smoke and organic matter 
detected during these months. No elemental carbon data set is available however, so this 
finding is not fully represented in the above introduced source factors. 
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Figure 5 Monthly averaged total PM2.5 levels and their 
source appointments based on the IMPROVE 
algorithm. The dashed red line indicates the 24h 
advisory level set out in the Air Quality NEPM. 
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Figure 6 Monthly averaged PM10 levels and source factors 
based on the IMPROVE method. 



11 
 

During the warmer months an increased contribution of windblown soil/dust to the PM2.5 
levels is visible. This also holds true for the total PM10 levels, for which the measured 
amount of soil and dust is generally found to be significantly higher than for PM2.5 (which is 
expected as most dust particles exhibit aero-dynamic diameter well above 2.5 µm). 

Even though the potential of the IMPROVE calculations is limited in the framework of this 
report (mainly due to small data sets), they do provide rough indications and thus viable 
information on seasonal fluctuations in the composition of airborne particulate matter 
pollution. In order to further refine the above discussed source contribution analysis as well 
as to provide well-established error estimations, a more sophisticated statistical model 
needs to be utilised. 

 

SOURCE CONTRIBUTION ANALYSIS – POSITIVE MATRIX FACTORISATION 

Positive matrix factorisation (PMF) is an advanced one-step receptor model based on least-
squares techniques that uses error estimates of the measured data in order to provide 
meaningful weights during the fitting process.[ 17] It is a mathematical approach for 
quantifying the contribution of sources to samples based on the composition or fingerprints 
of the sources.[15,17,18] A speciated data set can be viewed as a data matrix X of i × j 
dimensions, in which i number of samples and j chemical species were measured, with 
uncertainties u. The overall aim of the receptor model is solving the chemical mass balance 
between measured species concentrations and a number of proposed source factors:  

ij

p

k
kjikij efgx += ∑

=1
 

with number of factors p, species profiles f of each source, the particulate mass 
contributions g by each factor to each individual sample, and the residuals eij for each 
sample/species. PMF will now decompose the sample data into two matrices, namely factor 
contributions (G) and factor profiles (F). In the end the factor profiles have to be interpreted 
by the user in order to identify the source types – which will require sampling site 
knowledge and experience in identifying the source associated with elemental fingerprints 
of each factor.  

Factor contributions and profiles are then derived by minimising the objective function Q 
2

1 1
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= =
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which is a critical parameter for PMF. Two versions will be obtained for each solution – 
namely Q(true), a goodness-of-fit parameter calculated including all points, and Q(robust), a 
goodness-of-fit parameter calculated excluding any points that cannot be fit by the model 
(defined as samples for which the uncertainty-scaled residual is greater than 4). 

The difference between Q(true) and Q(robust) is a measure of the impact of data points 
with high scaled residuals, i.e., data points that are not consistently present during the 
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sampling period. On the other hand, if uncertainties are too high very similar results in both 
Q values will be obtained as the residuals are scaled by the uncertainty. 

Species S/N Category 
H 10.0 Strong 
Si 9.9 Strong 
S 9.8 Strong 

Fe 9.4 Strong 
K 8.8 Strong 
Cl 6.8 Strong 
Al 2.5 Strong 
Zn 1.8 Strong 
Ca 1.4 Strong 
Cu 0.7 Strong 
Mn 0.4 Strong 
Ti 0.3 Weak 
P 0.3 Weak 
Cr 0.2 Weak 
Na 0.2 Weak 
Pb 0.1 Weak 
Ni 0.1 Weak 
Br 0.1 Weak 
Co 0.0 Weak 
Se 0.0 Weak 
V 0.0 Weak 

Mass 10.0 Weak 

Parameter  
Data type; averaging timeframe PM2.5 [µg/m3]; 24-h 
N non-weak species (m) 11 (22 total) 
N samples (n) 37 
N factors (p) 5 
Treatment of missing data No missing data included 
Treatment of concentrations 
≤ MDL 

Data used as reported, no 
modification or censoring 

Treatment of concentrations 
≤ 0.0 

Data used as reported, no 
modification or censoring 

Lower limit for normalised factor 
contributions gik 

–0.2 

Robust mode Yes 
Constraints None 
Extra modelling uncertainty (%) 10 
Seed value 55 
N bootstraps in BS;  r2 for BS 400; 0.8 
BS block size 1 
DISP dQmax 4, 8, 15, 25 
DISP active species all non-weak 
N bootstraps; r2 for BS in BS-DISP 100; 0.8 
BS-DISP active species H, Al, S, Cl, K 
BS-DISP  dQmax 0.5, 1, 2, 4 
CPU runtimes* for DISP, BS-DISP < 1 h, < 2 h 
* Windows 7, 64-bit,running in Oracle VirtualBox VM on 
   (early 2013) MacBook Pro, OS X 10.10.5 
   with Intel Core i7-3840QM CPU @ 2.8 GHz, 16 GB RAM 

Table 4 Element, signal to noise 
ratio, assigned category. 

 

Table 5 Summary of EPA PMF input/settings 

 
The freely available software package EPA PMF 5.0 (maintained and distributed by the 
United States Environmental Protection Agency) was used for the analysis presented in this 
report. Further technical details as well as a user guide can be found online.[19] In the 
following, the most important modelling parameters will be provided. 

As a first step each element species had to be categorised regarding its signal to noise ratio 
(S/N) within the data matrix. Because of either large measurement uncertainties or 
concentrations significantly below the method detection limits (MDL) not all element 
concentrations are sufficient to be used as model input. Table 4 (above left) provides a short 
overview of all elements present in the PMF data set, their signal to noise ratios, and the 
user-defined category of each species. The S/N ratio is automatically calculated by the PMF 
software taking concentrations as well as measurement uncertainties (or optional MDL) into 
account. The assigned category will determine how strong a species will contribute to the 
best-fit solution – “strong” species are fully taken into account, “weak” will triple the 
species’ uncertainty, and “bad” will exclude the species from the model. Based on the 
overall small number of available filters in the present data set no elements were excluded 
from the PMF model (except for F, originating from the Teflon® filters rather than any 
natural source), but most of the species with very low S/N ratios (< 0.5) have been 
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categorised as weak. The gravimetric PM2.5 filter mass (bottom row in Table 4) is specified as 
a “total variable” which is used by the program only for post-processing of results and thus 
automatically set to weak to minimise its influence on model solutions. In addition, an 
overall +10% model uncertainty was added to the species-specific measurement 
uncertainties in order to allow large enough errors to ensure reasonable and stable PMF 
solutions. 

Using this categorisation, after several short 
PMF test runs, a stable final solution for five 
factors has been found starting from 250 
base runs and using the input parameters 
summarised in Table 5. Base run #229 
resulted in the lowest Q(robust) = 139.2 
value, which is satisfactorily lower than the 
theoretical Qexp = m×n – p(m+n) = 167 for 
the present data set (EPA PMF only uses 
strong species to calculate Qexp). The 
residual analysis for this particular run 
revealed that the scaled residuals for all 
strong species are well-modelled, meaning 
they are within the required ± 3 standard 
deviations and all normally distributed, as 
shown in Figure 7 on the right. In fact, the 
scaled residuals of all species in the data set 
are within these limits, but for clarity, only 
strong species are shown in the figure. This 
finding is also confirmed by looking at the 
Q/Qexpected ratios (Figure 8 to the right) for 
all elements, showing that only Zn exhibits 
a ratio ≥ 2, and Ca and K slightly below that 
value. These three elements also have the 
broadest scaled-residuals distributions and 
together with their Q-ratios at around 2 this 
indicates that they might be present in 
infrequent sources – a fact which most 
likely originates from the low number of 
filters. More information on this ratio (and 
how it is calculated) can be found in the 
EPA PMF user’s guide.[20] 

As already mentioned, the rather broad residuals distribution and the Q/Qexp > 2 value for 
Zn indicate that this species is not well modelled; however, test runs with both smaller and 
larger uncertainties and runs with more than 5 source factors did not result in any stable 
solutions – an in-depth error analysis (discussed in detail below) revealed that this is in fact 
the most stable solution, and any changes to the input parameters would lead to rotational 
ambiguity. It was expected though, that the PMF approach would not result in a perfect 
solution, as this method is foremost a statistical tool and will perform much better for data 
sets including at least hundred(s) of individual samples. 
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Figure 7 Scaled residual analysis for the stable 
PMF solution showing only strong 
species included in the model. 
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For the error estimation of the stable solution all three possible methods available within 
the EPA PMF 5.0 software package have been used, which are the displacement (DISP), the 
bootstrap (BS), and a combination of both methods (BS-DISP). DISP intervals include 
rotational ambiguity effects, BS intervals include effects from random errors and partially 
include effects of rotational ambiguity (while being generally robust if data uncertainties are 
misspecified), and BS-DISP intervals fully include both random errors and rotational 
ambiguity (but less robust in case of misspecified data uncertainty). Detailed descriptions of 
these methods can be found in the user manual as well as in scientific literature.[21]  

The first step in the base error estimation procedure was to perform the DISP calculation, 
followed by the BS calculation (with input parameters for both methods given in Table 5) 
allowing all 11 strong species to be displaced. There were no decreases in Q for the DIPS 
runs, nor any swap counts in the lower dQmax ranges. For the final BS-DISP run (which needs 
both DISP and BS error bars as input) only key elements of source factors were allowed to 
be displaced (see Table 5). No cases with a significant decrease in Q could be identified, as 
the largest decrease was only dQ = –0.59 (–0.42%), even though 114 possible swaps in the 
best fit and 31 swaps in the DISP result were found. In general this means that all source 
profiles and source factors in the initial base solution are reasonably well modelled and no 
additional rotations or species displacements would significantly improve the solution based 
on the current data set and data uncertainties. 

In order to further confirm that the found 
solution is mathematically unique, i.e., no 
rotations and/or transformations of the factor 
matrices G and F exist that would lead to the 
same Q-values, an Fpeak was performed using 
the implemented rotational tools. A positive 
Fpeak strength is used to sharpen the F-matrix 
and smear the G-matrix, and vice-versa for a 
negative strength. The resulting Q-values for 
the explored range of strength-parameters are 
plotted in Figure 9 on the left, and it can easily 
be seen that the stable base solution (at zero 
strength) already represents the minimum, 
thus appearing to be unique. 

 
 

The most important results of the PMF solution are the source factor profile matrix F and 
the source factor contribution matrix G, which are shown in Figure 10 and Figure 11 on the 
following pages. The first figure shows the element concentration profiles within each 
individual source factor in µg/m3 (often called source factor composition or factor 
fingerprints), while the latter one depicts the percentage contribution of each element to a 
given source factor.  
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Figure 9 Q vs. Fpeak strength for rotational 
analysis. Base run at strength = 0.00 
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Figure 10 Concentration profiles (fingerprints) of the five identified PMF source factors 
including error bars (5th and 95th percentiles from bootstrap error estimations). 
Due to the concentration ranges the abscissa are shown on logarithmic scales. 
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Figure 11 Percentage contribution of each element to the five identified source factors. 
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Assigning meaningful sources to each of the five factors in the current PMF solution is now 
(as already mentioned) based on site knowledge and mostly on tracer elements for known 
pollution sources. For example, the first factor in Figure 11 (top, black) contains almost 60% 
of all K and about as much of Zn – both elements known to be key indicators for biomass 
burning (i.e., wood smoke either from residential heating and/or bush fires). The source 
with the highest concentrations of Al, Si, Fe, and Ti is most likely to be windblown soil/dust, 
which is found for the third factor (orange), while sea salt (second factor, blue) can easily be 
identified by its high concentration of Cl. (Note: one would of course also expect to find a 
high Na contribution to this factor, however, either the Na data set was incomplete or Na is 
predominantly present as Na⊕, but no water-soluble ions have been measured.) The 
remaining two factors can be assigned to secondary sulfate aerosols – due to the [H]/[S] 
concentration ratio of ≈ 0.25 found in the bottom factor in Figure 10 (green), and to (mainly) 
road traffic related pollution (fourth factor in the figures, purple) – due to its high content of 
organic matter in combination with Br, Pb, P and Zn (from engine emissions), S (from tyre 
abrasion), or Cr and Ni (from oil combustion). 

All the error bars shown on the source profiles 
(Figure 10) are those which resulted from the BS 
calculations – and even though the small size of 
the available data set imposed limitations on the 
overall PMF model quality, the resulting profiles 
could be appointed straightforwardly and seem 
to be very reasonable regarding possible air 
pollution sources in the ACT. 

Additional quality assessment of the current PMF 
solution is provided by both the good correlation 
between the (observed) gravimetric filter mass 
and the (calculated) PMF mass, and the two well 
coinciding timeseries of these masses – depicted 
in Figures 12 and 13 on the right. Again, it is 
evident that despite the rather small numbers of 
samples and some missing months, the software 
does a fairly decent job reproducing the observed 
total filter mass. 

Finally, with the species contributions known and 
the source appointments done, the last step is to 
break down the overall sample compositions into 
individual (percent) factor contributions to unveil 
seasonal fluctuations of pollution sources. This is 
done in Figure 14 on the next page, which shows 
the monthly-averaged contribution of each 
source to the PM2.5 levels. As already mentioned, 
not all months are covered in the data set and 
thus caution should be taken when interpreting 
this figure – some basic facts can however be easily deduced. Apparently, the two main 

Figure 12 PMF mass vs. observed mass. 
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Figure 13 Timeseries of both PMF and ob-
served PM2.5 mass. 



18 
 

sources of the airborne fine particulate 
matter levels monitored in the Monash 
air shed are road traffic and biomass 
combustion. Traffic constituted a fairly 
constant factor over the whole sampling 
period, reading a bit above 50% (with 
small fluctuations and one exceptional 
peak for March 2015). In general, wood 
combustion made up about 30-40% of 
the levels during the cold season and 
dropped to around 10% during warmer 
months. The visible peak during 
December 2014 is likely to come from 
bush fires and/or hazard reduction burns 
conducted both in and around the ACT. 
Secondary sulfate aerosols can be found 
all year long, but naturally exhibit higher 
concentrations during the longer 
summer days, due to the underlying 
atmospheric photochemistry. The 
remaining two factors, sea salt and 
windblown soil dust, are mostly inferior 
contributors to fine particulate matter, 
and only show significant levels between 

Oct-2014 and Dec-2014 – which, according to available climate data,[22] was a rather windy 
season. (Especially for sea salt as a contributing factor in the ACT wind is a prerequisite – but 
it can travel inland up to several hundred kilometres.[23]) Similar to the IMPROVE mass-
composition analysis (see Figure 5), Figure 15 below shows the composition of the monthly 

averaged PMF mass 
concentrations in µg/m3. Any 
recently discussed findings can 
also be seen in this figure. As 
with Figure 5, the June and July 
2015 peaks are based on a 
small number of filters and do 
not necessarily represent the 
total levels for both months.  
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Figure 14 Percentage of source factor contributions 
to the PMF fine particulate matter level. 
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Figure 15 Monthly averaged total PM2.5 levels and 
their source appointments based on the 
PMF solution; red line: Air Quality NEPM 
24-h standard. 
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Figure 16 (below) illustrates the overall fine particulate matter composition in the Monash 
air shed, showing the total source contributions averaged over all individual filters. A very 
distinct ranking of the sources can be observed, with (as already mentioned) road traffic 
with 56% and biomass burning with 31% clearly being the top factors, followed by 
secondary sulfate aerosols with about 6%. Sea salt and windblown soil are the two factors 
with the lowest contributions, together adding up to around 7%. 
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Figure 16 PMF total average source factor 
contributions over all analysed 
samples. 

 

Considering the imposed limitations on the PMF model these numbers are of course not 
totally accurate. Additionally, the PA PMF software package only shows (the 5th and 95th) 
percentiles and due to the small (and thus not normally distributed) data set, a statement 
about error bars on this figure is not constructive. As already discussed however, the final 
solution appeared to be reasonably stable and self-contained and thus we expect these 
numbers to be a reasonable approximation of source factors in the ACT. 

 

SUMMARY AND CONCLUSION 

The elemental composition of both fine and coarse airborne particulate matter (PM2.5 and 
PM10) – collected over a period of 16 months at the Monash air quality monitoring station in 
Canberra, Australian Capital Territory – was analysed using the two non-invasive ion beam 
techniques particle induced X-ray emission (PIXE) and particle induced gamma emission 
(PIGE) spectrometry. Based on element concentrations and statistical modelling, five major 
pollutant sources (biomass burning, sea salt, soil/dust, traffic, and secondary sulphates) for 
PM2.5 have been successfully appointed and the seasonal fluctuations in their contributions 
to the overall fine aerosol levels in the Tuggeranong valley have been examined. 

The most important findings and results of this study are as follows: 

− In general, the daily average particulate matter and aerosol pollution levels in the 
monitored airshed (Tuggeranong valley) were satisfactorily below the respective 24-
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hour ambient air quality NEPM standards of 50.0 µg/m3 for PM10 and 25.0 µg/m3 for 
PM2.5. 

− For PM10 the average concentration of windblown crustal soil/dust is about 4–5 
times greater than in PM2.5. 

− For PM2.5 the average concentration of wood-smoke related K was found to be 
about three times as high as in PM10. 

− PM2.5 levels, which usually have more impact on human health issues, were 
significantly elevated during winter months (May – August); Exceedances of the 24-
hour NEPM standard for PM2.5 are more likely to occur (and have occurred) during 
the cold period. 

− For PM2.5 distinct seasonal fluctuations were observed for both biomass 
combustion and soil/dust related contributions. During winter 30–40% of the fine 
aerosol pollution can be appointed to wood smoke and less than 5–10% to 
windblown soil, whilst in summer this ratio is inverted (up to 20% from soil and less 
than 10% from wood smoke – if no exceptional bushfire events occur). 

− Both (aged) sea salt and secondary sulfate aerosols contribute to the PM levels in the 
investigated airshed, and are subjected to seasonal fluctuations. Naturally, due to 
atmospheric transport/chemistry higher levels for both were found during hot 
months. 

In conclusion it should be noted that both the elemental analysis of airborne particulate 
matter within a specified airshed, and the accompanying source-contribution analysis, are 
extremely viable methods to not only monitor the concentrations of potentially harmful 
species in air pollutants, but also to help measure the impact of health and environmental 
policies over time. In this regard a continuation and/or implementation of similar projects is 
recommended, including the following suggestions for improved outcomes: 

− Extending the chemical analysis for direct measurement of water soluble ions (Na+, 
K+, NH4

+, SO4
2–, NO3

–) and carbon (elemental/soot carbon EC, organic carbon OC). 

− If technically feasible, extend filter sampling times from 24 hours to (e.g.) 72 hours, 
in order to improve quantitative analysis of low-concentration species. 

− In order to effectively study potential policy impacts, any future monitoring should 
be conducted over a minimum period of 2 years to include at least two sets of each 
season, the longer the better. 

− Include the Florey monitoring station as a second sampling location in order to 
increase data coverage for statistical assessment and/or spatial breakdown of air 
pollution if required, especially for fine particulate matter. 
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